

簡報概要

計畫緣起

計畫流程

時程規劃

收費標準

計畫緣起

計畫流程

诗程規劃

費標準

為提高民眾居住安全,有效推動私有供公眾使用建築物進行耐震能力強制評估,內政部於107年2月21日修正發布「建築物公共安全檢查簽證及申報辦法」(以下簡稱本辦法,如附錄一)。

依本辦法第七條

主要針對:

- 1. 民國88年12月31日以前領得建造執照
- 2. 規定之建築物使用類組
- 3. 使用之樓地板面積累計達1000m²以上 之建築物
- 4. 該建築物同屬一所有權人或使用人應辦理耐震能力評估檢查申報

公共集會類	A-1	供集會、表演、社交,且具觀眾席之場所。					
公共未曾知	A-2	供旅客等候運輸工具之場所。					
商業類	B-2	供商品批發、展售或商業交易,且使用人替換頻率高之場所。					
尚未 類	B-4	供不特定人士休息住宿之場所。					
	D-1	供低密度使用人口運動休閒之場所。					
休閒、文教類	D-3	供國小學童教學使用之相關場所。(宿舍除外)					
	D-4	供國中以上各級學校教學使用之相關場所。(宿舍除外)					
	F-1	供醫療照護之場所。					
衛生、福利、	F-2	供身心障礙者教養、醫療、復健、重建、訓練、輔導、服務 之場所。					
更生類	F-3	供兒童及少年照護之場所。					
	F-4	供限制個人活動之戒護場所。					
住宿類	H-1	供特定人短期住宿之場所。					

依「建築物使用類組及變更使用辦法」附表一,項目舉例可參考附表二(附錄二)。

計畫緣起

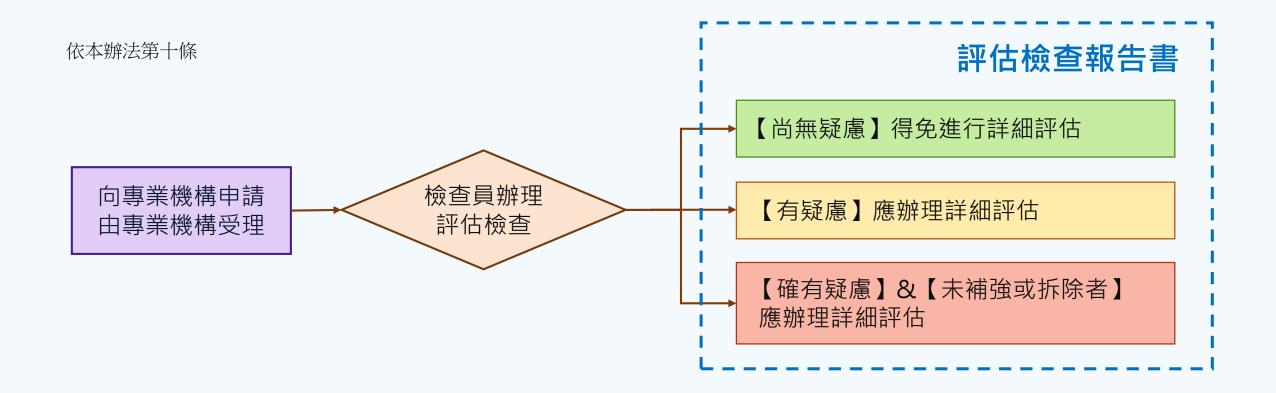
- 經耐震能力評估檢查結果為「需補強」之建築物
- 明顯有公共安全疑慮者
- 由當地主管建築機關通知後未完成補強或拆除者_

依本辦法第八條第一項 依申報期間及施行日期 (附錄二)

每2年辦理1次 耐震能力評估檢查

目的:規範政府執法頻率,適時發現部分內部構造的改變,強制督促建物所有權人儘速完成改善。

依本辦法第九條


耐震評估檢查係採一次性強制評估制度,一旦完成補強報告,爾後年度即免除申報義務。

案件如有檢附以下三種之一者,爾後年度均不再需要辦理 任何耐震評估檢查申報。

- **1.** 已依建築物實施耐震能力評估及補強方案完成耐震能力評估及補強程序之相關證明文件。
- **2.** 依法登記開業建築師、執業土木工程技師、結構工程 技師出具之補強成果報告書。
- 3. 已拆除建築物之證明文件

時程規劃

計畫流程_初評報告書格式簡介(1/7)

建築物耐震能力初步評估檢查報告書

E1 - 5

檢查登記號碼:

年度	評估檢查日期	年	月	В	
評估檢查申報案	文號				

壹、建築物基本資料表

申報建築物或營 業場所名稱		評估檢查日期							
建築物地址									
設計年度	建物高度 h, (m)	用途係數I							
地盤種類	地上樓層數	地下樓層數							
建築物依樓層分類	: □五樓以下 □六樓以	人上							
建築物依構造型式	分類:□鋼筋混凝土構造	□加強磚造 □鋼構造□輕鋼	構造□木構造□磚						
構造□其它:		0							
現況用途類組: 🗆	現況用途類組:A-1 類組A-2 類組B-2 類組B-4 類組D-1 類組D-3 類組D-4 類								
組□F-1 類組□F-2 類組□F-3 類組□F-4 類組□H-1 類組									
□其它:。									
本評估參考資料:[□設計圖說 □計算書 [

基本資料

計畫流程_初評報告書格式簡介(2/7)

貳、建築物耐震能力初步評估之評估內容及評分表(以下各表依構造型式選擇適用)

一、鋼筋混凝土構造及加強磚造建築物耐震能力初步評估之評估內容及評分表

					權	
項次		項目	配分	評估內容	重 (1)	評分
1		静不定程度	5	□單跨(1.0) □雙跨(0.67) □三跨(0.33) □四 跨以上(0)		
2		地下室面積比, Γ _α	2	0≤(1.5-r _a)/1.5≤1.0; r _n :地下室面積與建築面積之 比		
3	結構	平面對稱性	3	□不良(1.0) □尚可(0.5) □良(0)		
4	系統	立面對稱性	3	□不良(1.0) □尚可(0.5) □良(0)		
5		梁之跨深比 b	3	當 $b < 3$, $w = 1.0$; 當 $3 \le b < 8$, $w = (8-b)/5$; 當 $b \ge 8$, $w = 0$		
6		柱之高深比 c	3	$\stackrel{*}{a}c < 2 \square w = 1.0 \square \stackrel{*}{a} 2 \le c < 6 \square w = (6-c)/4 \square \stackrel{*}{a} c ≥ 6 \square w = 0$		
7		軟弱層顯著性	3	□高(1.0) □中(0.67) □低(0.33) □無(0)		
8	結構細部	塑鉸區箍筋細部 (由設計年度評估)	5	□63 年 2 月以前(1.0) □63 年 2 月至 71 年 6 月 (0.67) □71 年 6 月至 86 年 5 月(0.33) □86 年 5 月以後 (0)		
9		窗台、氣窗造成短	3	□高(1.0) □中(0.67) □低(0.33) □無(0)		

結構現況(定性)

計畫流程_初評報告書格式簡介(3/7)

		柱嚴重性			
10		牆體造成短梁嚴重 性	3	□高(1.0) □中(0.67) □低(0.33) □無(0)	
11		柱之损害程度	2	□高(1.0) □中(0.67) □低(0.33) □無(0)	
12	結構	牆之損害程度	2	□高(1.0) □中(0.67) □低(0.33) □無(0)	
13	現況	裂縫鏽蝕滲水等程 度	3	□高(1.0) □中(0.67) □低(0.33) □無(0)	
14	定量	475 年耐震能力初 步評估	30	$\stackrel{\mathcal{A}_{c1}}{\cong} \frac{A_{c1}}{IA_{c2}} \le 0.25 \cdot w = 1 : \stackrel{\mathcal{A}_{c1}}{\cong} 0.25 \le \frac{A_{c1}}{IA_{c2}} \le 1 \cdot w = \frac{4}{3} \left(1 - \frac{A_{c1}}{IA_{c2}} \right) : \stackrel{\mathcal{A}_{c1}}{\cong} \frac{A_{c1}}{IA_{c2}} > 1 \cdot w = 0$ $A_{c1} = \min[A_{c1,x}, A_{c1,y}]$	
15	分析	2500 年耐震能力 初步評估	30	$\begin{array}{l} \frac{A_{c2}}{II_{2000}} \leq 0.25 \cdot w - 1 : \frac{4}{10} \cdot 0.25 \leq \frac{A_{c2}}{II_{2000}} \leq 1 \cdot w - \frac{4}{3} \left(1 - \frac{A_{c2}}{II_{2000}}\right) : \frac{4}{10} \cdot \frac{A_{c2}}{II_{2000}} > 1 \cdot w - 0 \\ A_{c2} = \min[A_{c2,x}, A_{c2,y}] \end{array}$	
危險	度分數	t總計	100	危險度評分總計(P):	

結構現況(定性)

額外評估項目:

此部分為外加評分項目,評估人員應就表列「危險度額外增分」、「危險度額外減分」事項 評分,各項最高配分為2分,總共最高配分為8分;減分最高配分為2分

	A	分期興建或工程品質有疑慮	
危險度	В	曾經受災害者,如土石流、火災、震災、人為破壞等	
額外增分	С	使用用途由低活載重改為高活載重使用者	
	D	傾斜程度明顯者	
危險度 額外滅分	a	使用用途由高活載重改為低活載重使用者	
		危險度額外評分總計(S)	
		危險度總評估分數 R=P+S	

備註:(1)權重欄位由評估人員依評估內容評定後填列。

(2)評估案件如為加強磚造者,評估項次1、5、6、8、9、10及11等7項不予評分,項次2至4、7、12及13評分加總,乘以放大係數2.5,再加上項次14及15之分數後,即為危險度評分總計(P)值。

計畫流程_初評報告書格式簡介(4/7)

參、綜合評論及評估檢查簽證結果

綜合評論									
	評估檢查簽證結果								
□危險度總評估分數 R≦30 者;或評估分數≥70:建築物 耐震能力尚無疑慮。	評估檢 查專業	機構名稱 (負責人姓名)							
□30<危險 度總評估分 數 R≤60 □30<危險度總 評估分數 R≤45 者;或 70>評估	機構	認可證字號	(機構及負責人用印)						
者;或 70> 評估分數≥ 40:建築物耐 評估分數 R≤60		檢查員姓名							
震能力有疑 者;或55>評估 分數≥40		核准文件日 期及字號							
			(簽章)						
□危險度總評估分數 R> 60 者;或評估分數<40:建築物 耐震能力確有疑慮。									

評估結果

計畫流程_初評報告書格式簡介(5/7)

結構參數(定量)

肆、定量評估表(以下各表依構造型式選擇適用)

一、鋼筋混凝土構造定量評估表

建築物資	訊
2樓~j樓之樓地板面積靜載重W _{1D} (tf/m²)	□推估值 □設計值
(j+1)樓~k樓之樓地板面積靜載重W _{2D} (tf/m²)	□推估值 □設計值
(k+1)樓~屋頂之樓地板面積靜載重w3D(tf/m²)	□推估值 □設計值
2 樓~j樓之樓地板面積活載重 $w_{1L}(tf/m^2)$	□推估值 □設計值
(j+1)樓~k樓之樓地板面積活載重W _{2L} (tf/m²)	□推估值 □設計值
(k+1)樓~屋頂之樓地板面積活載重W3L(tf/m²)	□推估值 □設計值
2樓~j樓之總樓地板面積 A ₁ (m ²)	□推估值 □設計值
(j+1)樓~k樓之總樓地板面積 A ₂ (m ²)	□推估值 □設計值
(k+1)樓~屋頂之總樓地板面積 A ₃ (m ²)	□推估值 □設計值
建築物靜載重 $W_D = \sum_{i=1}^3 w_{iD} \times A_i$ (kgf)	
建築物總載重W = $\sum_{i=1}^{3} (w_{iD} + \frac{1}{2}w_{iL}) \times A_i$ (kgf)	

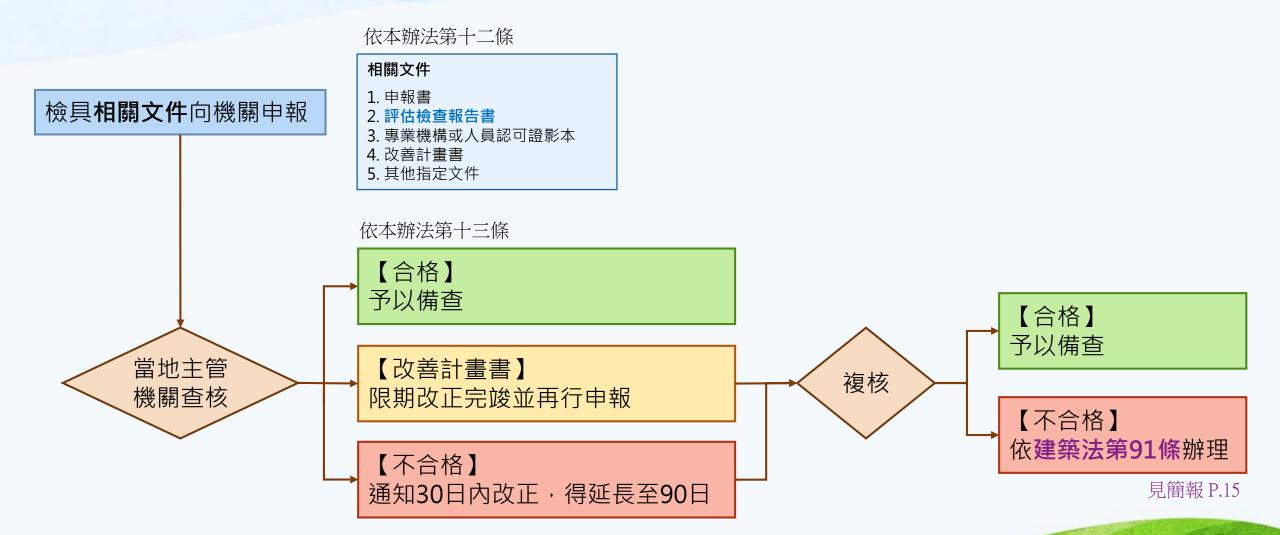
一堆	柱材料參數			
混凝土抗壓強度 $f_c(kgf/cm^2)$	□推估值 □設計值			
主筋降伏強度 $f_y(kgf/cm^2)$	□推估值 □設計值			
箍筋降伏強度 $f_{yv}(kgf/cm^2)$	□推估值 □設計值			
柱之保護層厚度 c(cm)	□推估值 □設計值			
一樓	牆材料參數			
RC牆混凝土抗壓強度 f _c (kgf/cm ²)	□推估值 □設計值			
RC 牆主筋降伏強度 $f_y(kgf/cm^2)$	□推估值 □設計值			
磚牆砂漿塊抗壓強度 $f_{mc}(kgf/cm^2)$	□推估值 □設計值			
磚牆紅磚之單軸抗壓強度 $f_{bc}(kgf/cm^2)$	□推估值 □設計值			

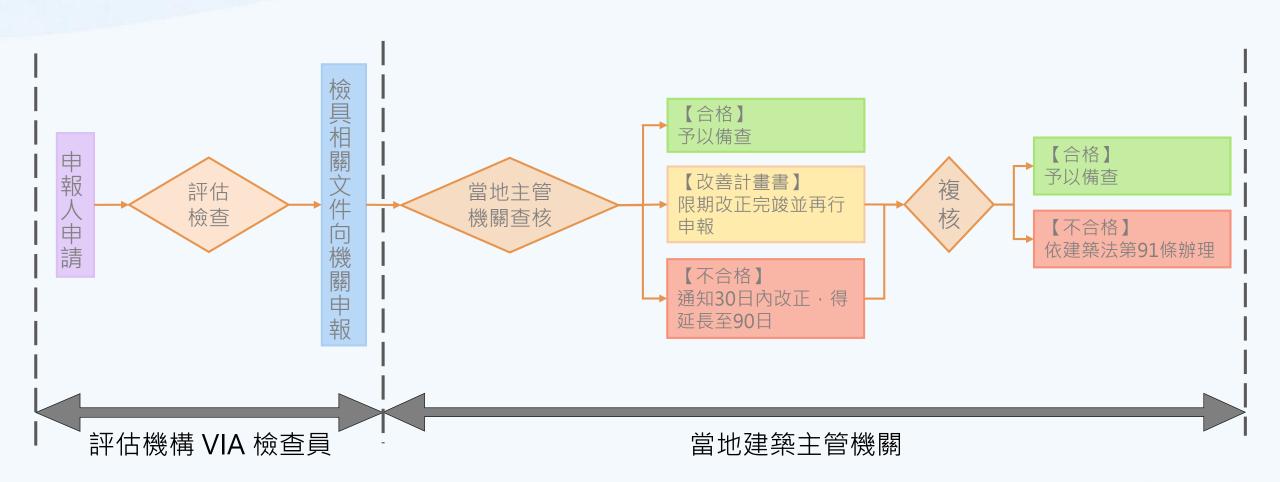
計畫流程_初評報告書格式簡介(6/7)

Ⅹ向定量評估

	的定量 评估	建築物週期(sec): $\square 0.07 h_n^{0.75}$ $\square 0.05 h_n^{0.75}$										性容量 R		
一般柱類別	柱型 式 (type)	柱 寛 / 直 (cm) (<i>Bc</i>)/(<i>Dc</i>)	柱深/直徑(m)/(Dc)		(cm)	横箍繋號 No	横 ん 繋 り Num	横籍筋斷積 (cm ²)	横 籍 筋 距 (cm) S	柱 根 數 (N _{ci})	撓虫 破壊 性制 (kgf) (V _{m,coll})	剪力 破控制 (kgf) (Vsul)	V _{coli} (kgf)	$V_{coli} imes N_{ci}$ (kgf)
				一般	建柱(-	-樓柱	淨高與	柱淨深	之比值	直(h1 /	(H _c)>2)			
							-	-般柱=	之極限	強度	$\Sigma V_{coli} \times N$	Vci (kgf)		

柱牆總和強度(定量)


四面圍東磚牆	牆厚度 (cm) (T _b)	長度 (cm) (W _b)	高度 (cm) (H _b) 関東磚器	數量 (N _{bwli}) ⁶ 之極限剪力強度	單片牆之剪力強度 $(kgf)(V_{bw4i})$	磚牆剪力強度小計 (kgf) (V _{bw4i} ×N _{bw4i})
三面圍東磚牆	牆厚度 (cm) (T _b)	長度 (cm) (W _b)	高度 (cm) (H _b)	數量 (N _{bw3i})	單片牆之剪力強 度(kgf) (V _{bw3i})	磚牆剪力強度小計 (kgf) (V _{bw3i} ×N _{bw3i})
		三面	圍東磚船	鲁之极限剪力强度	$\Sigma V_{bw3i} \times N_{bw3i}$ (kgf)	
無側邊圍東磚牆	牆厚度 (cm) (T _b)	長度 (cm) (W _b)	高度 (cm) (H _b)	數量(N _{bw2i})	單片牆之剪力強 度(kgf) (V _{bw2i})	磚牆剪力強度小計 (kgf) (V _{bw2i} ×N _{bw2i})


計畫流程_初評報告書格式簡介(7/7)

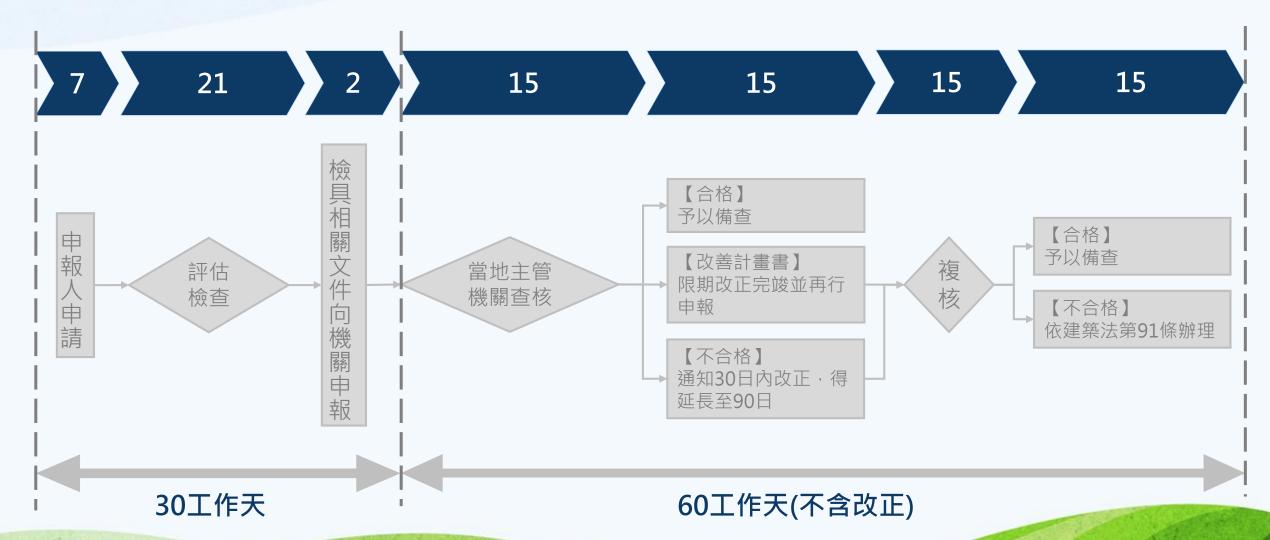
建築物 2500 年地震回歸期耐震能力計算(建韌性容量地震之地表加速度)

一樓層極限剪力強度	j=1	j=2	j=3	
$V_{uj}^* = [C_{vcj} \times \sum V_{coli} \times N_{ci} + C_{vsj} \times (\sum V_{swi} \times N_{swi} + \sum V_{scoli} \times N_{sci}) + C_{vbj} \times \sum V_{bwi} \times N_{bwi}] \times \phi_{pl} \times \phi$				
; $j=1\sim3$ (kgf)				
新設計建築物之極限剪力強度 $(V_{100})_u = I(\frac{S_{aD}}{F_{uu}})_m W_D(kgf)$				
受評估建築物之降伏地表加速度 $A_{yj,x} = \frac{V_{uj}}{\frac{S_{aD}W_D}{0.4S_{DS}}} = \frac{V_{uj}S_{DS}}{2.5S_{aD}W_D}$ (g) ; $j = 1 \sim 3$				
$R_{i}^{'} = \frac{\left[C_{kej} \times (R_{col} - 1) + 1\right]C_{v_{i}}(\sum V_{v_{i}} \times N_{v_{i}}) + \left[C_{kej} \times (R_{coc} - 1) + 1\right]C_{v_{i}}(\sum V_{v_{i}} \times N_{v_{i}}) + \left[C_{kej} \times (R_{be} - 1) + 1\right]C_{v_{i}}(\sum V_{v_{i}} \times N_{v_{i}}) + \left[C_{kej} \times (R_{be} - 1) + 1\right]C_{v_{i}}(\sum V_{v_{i}} \times N_{v_{i}}) + \left[C_{kej} \times (R_{be} - 1) + 1\right]C_{v_{i}}(\sum V_{v_{i}} \times N_{v_{i}}) + \left[C_{kej} \times (R_{be} - 1) + 1\right]C_{v_{i}}(\sum V_{v_{i}} \times N_{v_{i}}) + \left[C_{kej} \times (R_{be} - 1) + 1\right]C_{v_{i}}(\sum V_{v_{i}} \times N_{v_{i}}) + \left[C_{kej} \times (R_{be} - 1) + 1\right]C_{v_{i}}(\sum V_{v_{i}} \times N_{v_{i}}) + \left[C_{kej} \times (R_{be} - 1) + 1\right]C_{v_{i}}(\sum V_{v_{i}} \times N_{v_{i}}) + \left[C_{kej} \times (R_{be} - 1) + 1\right]C_{v_{i}}(\sum V_{v_{i}} \times N_{v_{i}}) + \left[C_{kej} \times (R_{be} - 1) + 1\right]C_{v_{i}}(\sum V_{v_{i}} \times N_{v_{i}}) + \left[C_{kej} \times (R_{be} - 1) + 1\right]C_{v_{i}}(\sum V_{v_{i}} \times N_{v_{i}}) + \left[C_{kej} \times (R_{be} - 1) + 1\right]C_{v_{i}}(\sum V_{v_{i}} \times N_{v_{i}}) + \left[C_{kej} \times (R_{be} - 1) + 1\right]C_{v_{i}}(\sum V_{v_{i}} \times N_{v_{i}}) + \left[C_{kej} \times (R_{be} - 1) + 1\right]C_{v_{i}}(\sum V_{v_{i}} \times N_{v_{i}}) + \left[C_{kej} \times (R_{be} - 1) + 1\right]C_{v_{i}}(\sum V_{v_{i}} \times N_{v_{i}}) + C_{kej}(\sum V$				
$C_{_{\boldsymbol{v}}}(\sum V_{_{\boldsymbol{v}}} \times N_{_{\boldsymbol{v}}}) + C_{_{\boldsymbol{v}}}(\sum V_{_{\boldsymbol{v}}} \times N_{_{\boldsymbol{v}}} + \sum V_{_{\boldsymbol{v}\boldsymbol{v}}} \times N_{_{\boldsymbol{v}\boldsymbol{v}}}) + C_{_{\boldsymbol{v}}}(\sum V_{_{\boldsymbol{v}\boldsymbol{v}}} \times N_{_{\boldsymbol{v}\boldsymbol{v}}})$			上楼	耐震能力(定量)
; $j = 1 \sim 3$		が]	
$F_{uj}^* = F_u(T, R_j^*)$; j=1~3				
V_{uj}/W_D				
建築物 X 向耐震能力 $A_{c2,x}=\max[A_{yj,x}F_{uj}^*\;;j=1\sim3]$ (g)				
$\frac{A_{c2,x}}{A_{2500}}$				
A_{2500}				

 $\pm: \Sigma V_{bwi} \times N_{bwi} = \Sigma V_{bw4i} \times N_{bw4i} + \Sigma V_{bw3i} \times N_{bw3i} + \Sigma V_{bw2i} \times N_{bw2i}$

• 建築法第91條

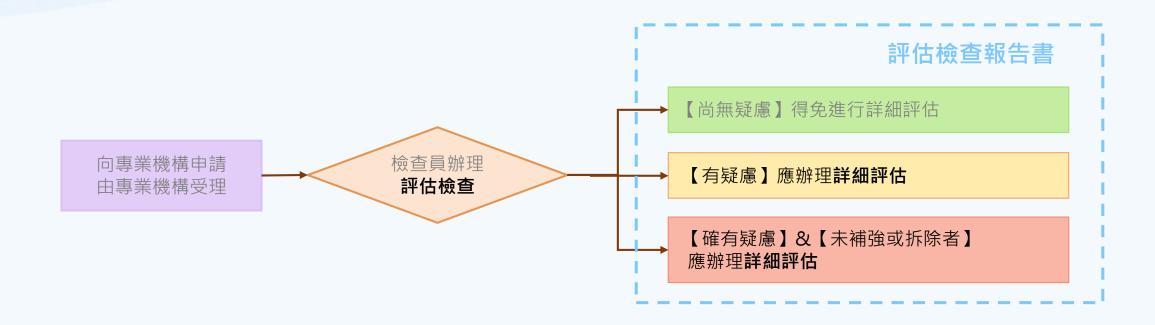
有左列情形之一者,處建築物所有權人、使用人、機械遊樂設施之經營者新臺幣六萬元以上三十萬元以下罰鍰,並限期改善或補辦手續,屆期仍未改善或補辦手續而繼續使用者,得連續處罰,並限期停止其使用。必要時,並停止供水供電、封閉或命其於期限內自行拆除,恢復原狀或強制拆除:


.....略......

四、未依第七十七條第三項、第四項規定辦理建築物公共安全檢查簽證或申報者。

.....略.....

有供營業使用事實之建築物,其所有權人、使用人違反第七十七條第一項有關維護建築物合法使用與其構造及設備安全規定致人於死者,處一年以上七年以下有期徒刑,得併科新臺幣一百萬元以上五百萬元以下罰金;致重傷者,處六個月以上五年以下有期徒刑,得併科新臺幣五十萬元以上二百五十萬元以下罰鍰。


3 計畫緣起 計畫流程 時程規劃 收費標準

計畫緣起

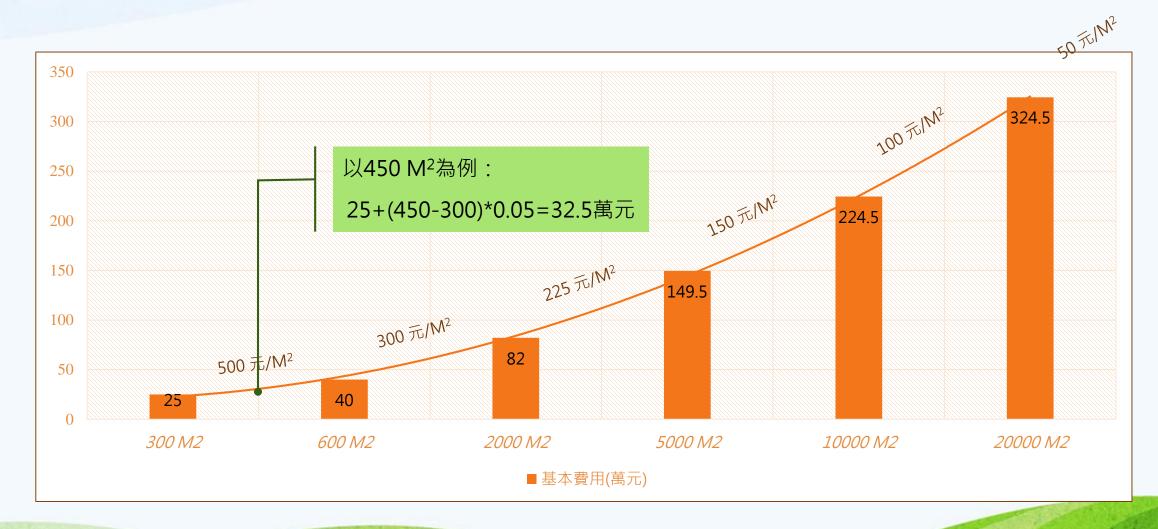
時程規劃

收費標準

初步評估 詳細評估

收費標準_初步評估

- 1. 基本費用每案訂定最低收費標準 20,000 元
- 2. 申請評估以「棟」為計價單位(註:「棟」之認定係以建築技術規則的定義為主)
- 3. 總樓地板面積未滿 3,000 m²者:
 - 每棟 20,000 元
 - 如為獨棟,按第一條收費
- 4. 總樓地板面積 3,000 m²以上者:
 - 每棟基本費 20,000 元
 - 超過 3000m² 以上面積增加4元/m²
- 5. 評估收費得依規模及複雜程度調整


計算公式:

20,000 + (面積-3,000)*4元

收費標準_詳細評估(1/2)

項目	建築物總樓地板面積	服務費用計算方式
1	不足 600㎡ 者	基本費用250,000元 超過300㎡部分,增加500元/m ²
2	600㎡ 以上不足 2000㎡ 者	基本費用400,000元 超過600m°部分,增加300元/m²
3	2000㎡ 以上不足 5000㎡ 者	基本費用820,000元 超過2000㎡部分,增加225元/m²
4	5000㎡ 以上不足 10000㎡ 者	基本費用1,495,000元 超過 5000㎡ 部分,增加 150元/m²
5	10000㎡ 以上不足 20000㎡ 者	基本費用2,245,000元 超過10000㎡部分,增加100元/m²
6	20000㎡ 以上者	基本費用3,245,000元 超過20000㎡部分,增加50元/m²

收費標準_詳細評估(2/2)

簡報結束

建築物公共安全檢查簽證及申報辦法

發布日期:2018-02-21

內政部 85.9.25 台內營字第 8584912 號函訂定 內政部 99.5.24 台內營字第 0990803552 號令修正 內政部 107.2.21 台內營字第 1070802652 號令修正

第一條 本辦法依建築法(以下簡稱本法)第七十七條第五項規定訂定之。

第二條 本辦法用詞,定義如下:

- 一、專業機構:指依本法第七十七條第三項規定由中央主管建築機關 認可,得受託辦理建築物公共安全檢查業務之技術團體。
- 二、專業人員:指依本法第七十七條第三項規定由中央主管建築機關 認可,得受託辦理建築物公共安全檢查業務,並依法登記開業之 建築師或執業技師。
- 三、檢查員:指由專業機構指派其所屬辦理建築物公共安全檢查業務 之人員。
- 四、標準檢查:指就建築物之現況檢查是否符合其建造、變更使用、 室內裝修時之建築相關法令規定。
- 五、評估檢查:指就建築物之現況是否損壞予以檢查,並就損壞現象 予以調查、記錄,並評估其損壞程度及判定其改善方式。

第三條 建築物公共安全檢查申報範圍如下:

- 一、防火避難設施及設備安全標準檢查。
- 二、耐震能力評估檢查。
- 第四條 建築物公共安全檢查申報人(以下簡稱申報人)規定如下:
 - 一、防火避難設施及設備安全標準檢查,為建築物所有權人或使用人。
 - 二、耐震能力評估,為建築物所有權人。

前項建築物為公寓大廈者,得由其管理委員會主任委員或管理負責人代為申報。建築物同屬一使用人使用者,該使用人得代為申報耐震能力評估檢查。

- 第五條 防火避難設施及設備安全標準檢查申報期間及施行日期,如附表一。
- 第六條 標準檢查專業機構或專業人員應依防火避難設施及設備安全標準檢查 簽證項目表(如附表二)辦理檢查,並將標準檢查簽證結果製成標準 檢查報告書。

前項標準檢查簽證結果為提具改善計畫書者,應檢附改善計畫書。

第七條 下列建築物應辦理耐震能力評估檢查:

- 一、中華民國八十八年十二月三十一日以前領得建造執照,供建築物使用類組 A-1、A-2、B-2、B-4、D-1、D-3、D-4、F-1、F-2、F-3、F-4、H-1組使用之樓地板面積累計達一千平方公尺以上之建築物,且該建築物同屬一所有權人或使用人。
- 二、經當地主管建築機關依法認定耐震能力具潛在危險疑慮之建築 物。

前項第二款應辦理耐震能力評估檢查之建築物,得由當地主管建築機關依轄區實際需求訂定分類、分期、分區執行計畫及期限,並公告之

第八條 依前條規定應辦理耐震能力評估檢查之建築物,申報人應依建築物耐 震能力評估檢查申報期間及施行日期(如附表三),每二年辦理一次 耐震能力評估檢查申報。

前項申報期間,申報人得檢具下列文件之一,向當地主管建築機關申請展期二年,以一次為限。但經當地主管建築機關認定有實際需要者,不在此限:

- 一、委託依法登記開業建築師、執業土木工程技師、結構工程技師辦理補強設計之證明文件,及其簽證之補強設計圖(含補強設計之耐震能力詳細評估報告)。
- 二、依耐震能力評估檢查結果擬訂或變更都市更新事業計畫報核之證明文件。
- 第九條 依第七條規定應辦理耐震能力評估檢查之建築物,申報人檢具下列文 件之一,送當地主管建築機關備查者,得免辦理耐震能力評估檢查申 報:
 - 一、本辦法中華民國一百零七年二月二十一日修正施行前,已依建築 物實施耐震能力評估及補強方案完成耐震能力評估及補強程序之 相關證明文件。
 - 二、依法登記開業建築師、執業土木工程技師、結構工程技師出具之補強成果報告書。
 - 三、已拆除建築物之證明文件。
- 第十條 辦理耐震能力評估檢查之專業機構應指派其所屬檢查員辦理評估檢 查。

前項評估檢查應依下列各款之一辦理,並將評估檢查簽證結果製成評估檢查報告書:

一、經初步評估判定結果為尚無疑慮者,得免進行詳細評估。

- 二、經初步評估判定結果為有疑慮者,應辦理詳細評估。
- 三、經初步評估判定結果為確有疑慮,且未逕行辦理補強或拆除者, 應辦理詳細評估。
- 第十一條 申報人應備具申報書及標準檢查報告書或評估檢查報告書,以二維條 碼或網路傳輸方式向當地主管建築機關申報。
- 第十二條 當地主管建築機關查核建築物公共安全檢查申報文件,應就下列規定 項目為之:
 - 一、申報書。
 - 二、標準檢查報告書或評估檢查報告書。
 - 三、標準檢查改善計畫書。
 - 四、專業機構或專業人員認可證影本。
 - 五、其他經中央主管建築機關指定文件。

前項標準檢查報告書或評估檢查報告書,由下列專業機構或專業人員依本法第七十七條第三項規定簽證負責:

- 一、標準檢查:標準檢查專業機構或專業人員。
- 二、評估檢查:評估檢查專業機構。
- 第十三條 當地主管建築機關收到申報人依第十一條規定檢附申報書件之日起, 應於十五日內查核完竣,並依下列查核結果通知申報人:
 - 一、經查核合格者,予以備查。
 - 二、標準檢查項目之檢查結果為提具改善計畫書者,應限期改正完竣 並再行申報。
 - 三、經查核不合格者,應詳列改正事項,通知申報人,令其於送達之 日起三十日內改正完竣,並送請復核。但經當地主管建築機關認 有需要者,得予以延長,最長以九十日為限。

未依前項第二款規定改善申報,或第三款規定送請復核或復核仍不合 規定者,當地主管建築機關應依本法第九十一條規定處理。

- 第十四條 當地主管建築機關對於本法第七十七條規定之查核及複查事項,得委 託相關機關、專業機構或團體辦理。
- 第十五條 建築物公共安全檢查申報相關書表格式,由中央主管機關定之。
- 第十六條 本辦法自發布日施行。

附錄二:整理自《建築物公共安全檢查簽證及申報辦法》附表三及《建築物使用類 組及變更使用辦法》附表二

建築物耐震能力評估檢查申報期間及場所舉例

類別	組別	建築物使用類組使用項目舉例	檢查及 申報期間
公共集會類	A-1	1.戲(劇)院、電影院、演藝場、歌廳、觀覽場等類似場所。 2.觀眾席面積在二百平方公尺以上之下列場所:體育館 (場)及設施、音樂廳、文康中心、社教館、集會堂(場)、 社區(村里)活動中心等類似場所。	第一季 - 1/1 至 3/31
	A-2	1.車站(公路、鐵路、大眾捷運)。 2.候船室、水運客站。 3.航空站、飛機場大廈。	
商業類	B-2	1.百貨公司(百貨商場)商場、市場(超級市場、零售市場、 攤販集中場)、展覽場(館)、量販店、批發場所(倉儲批 發、一般批發、農產品批發)等類似場所。 2.樓地板面積在五百平方公尺以上之下列場所:店舗、當 舖、一般零售場所、日常用品零售場所等類似場所。	第二季 - 4/1 至 6/30
	B-4	 觀光旅館(飯店)、國際觀光旅館(飯店)等之客房部。 旅社、旅館、賓館等類似場所。 樓地板面積在五百平方公尺以上之下列場所:招待所、供香客住宿等類似場所。 	
休閒、文教類	D-1	1.保齡球館、室內溜冰場、室內游泳池、室內球類運動場、 室內機械遊樂場、室內兒童樂園、保健館、健身房、健身 服務場所(三溫暖除外)、公共浴室(包括溫泉泡湯池)、 室內操練場、撞球場、室內體育場所、少年服務機構(供 休閒、育樂之服務設施)、室內高爾夫球練習場、室內釣 蝦(魚)場、健身休閒中心、美容瘦身中心等類似場所。 2.資訊休閒服務場所(提供場所及電腦設備,供人透過電腦 連線擷取網路上資源或利用電腦功能以磁碟、光碟供人 使用之場所)。	第三季 7/1 至 9/30
	D-3	小學教室、教學大樓等相關教學場所。	第三、四季
	D-4	國中、高中、專科學校、學院、大學等之教室、教學大樓等 相關教學場所。	7/1 至 12/31

類別	組別	建築物使用類組使用項目舉例	檢查及 申報期間
衛生、福利、更生類	F-1	1.設有十床病床以上之下列場所:醫院、療養院等類似場所。 2.樓地板面積在一千平方公尺以上之診所。 3.樓地板面積在五百平方公尺以上之下列場所:護理之家機構(一般護理之家、精神護理之家)、產後護理機構、屬於老人福利機構之長期照顧機構(長期照護型)、長期照顧機構(失智照顧型)等類似場所。	
	F-2	 1.身心障礙福利機構(全日型住宿機構、日間服務機構、樓地板面積在五百平方公尺以上之福利中心)、身心障礙者職業訓練機構等類似場所。 2.啟智(聰、明)學校、盲啞學校、益智學校。 3.日間型精神復健機構。 	第四季 10/1 至 12/31
	F-3	兒童及少年安置教養機構、幼兒園、幼兒園兼辦國民小學 兒童課後照顧服務、托嬰中心、早期療育機構等類似場所。 精神病院、傳染病院、勒戒所、監獄、看守所、感化院、觀	
住宿類	H-1	護所、收容中心等類似場所。 1.民宿(客房數六間以上)、宿舍、樓地板面積未達五百平方公尺之招待所。 2.樓地板面積未達五百平方公尺之下列場所:護理之家機構(一般護理之家、精神護理之家)、產後護理機構、屬於老人福利機構之長期照顧機構(長期照護型)、長期照顧機構(失智照顧型)、身心障礙福利服務中心等類似場所。 3.老人福利機構之場所:長期照顧機構(養護型)、安養機構、其他老人福利機構。 4.身心障礙福利機構。 5.住宿型精神復健機構、社區式日間照顧及重建服務、社區式身心障礙者日間服務等類似場所。	第一季 1/1 至 3/31